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1 Introduction

Introduction
In this lecture we discuss the Poisson regression model and some applications.

Poisson regression deals with situations in which the dependent variable is a
count. In our earlier discussion of the Poisson distribution, we mentioned that it
is a limiting case of the binomial distribution when the number of trials becomes
large while the expectation remains stable, i.e., the probability of success is very
small.

An important additional property of the Poisson distribution is that sums
of independent Poisson variates are themselves Poisson variates, i.e., if Y1 and
Y2 are independent with Yi having a P (µi) distribution, then

Y1 + Y2 P (µ1 + µ2) (1)

As we shall see, the key implication of this result is that individual and grouped
data can both be analyzed with the Poisson distribution.

2 An Introductory Example

An Introductory Example
On his superb website at data.princeton.edu(which I strongly recommend as

a source for reading and examples), Germán Rodŕıguez presents an introductory
example involving data from the World Fertility Study.

The Children Ever Born (ceb) Data
The dataset has 70 rows representing grouped individual data. Each row has
entries for:

• The cell number (1 to 71, cell 68 has no observations)



• Marriage duration (1=0–4, 2=5–9, 3=10–14, 4=15–19, 5=20–24, 6=25–
29)

• Residence (1=Suva, 2=Urban, 3=Rural)

• Education (1=none, 2=lower primary, 3=upper primary, 4=secondary+)

• Mean number of children ever born (e.g. 0.50)

• Variance of children ever born (e.g. 1.14)

• Number of women in the cell (e.g. 8)

Reference: Little, R. J. A. (1978). Generalized Linear Models for Cross-
Classified Data from the WFS. World Fertility Survey Technical Bulletins, Num-
ber 5.

An Introductory Example
A tabular presentation shows data on the number of children ever born to

married Indian women classified by duration since their first marriage (grouped
in six categories), type of place of residence (Suva, other urban and rural),
and educational level (classified in four categories: none, lower primary, upper
primary, and secondary or higher). Each cell in the table shows the mean, the
variance and the number of observations.

Introductory Example
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Introductory Example
The unit of analysis is the individual woman, the response variable is the

number of children given birth to, and the potential predictor variables are

1. Duration since her first marriage

2. Type of place where she resides

3. Her educational level, classified in four categories.

3 The Poisson Regression Model

The Poisson Regression Model
The Poisson regression model assumes that the sample of n observations yi

are observations on independent Poisson variables Yi with mean µi.

Note that, if this model is correct, the equal variance assumption of classic
linear regression is violated, since the Yi have means equal to their variances.

So we fit the generalized linear model,

log(µi) = x′iβ (2)

We say that the Poisson regression model is a generalized linear model with
Poisson error and a log link.

The Poisson Regression Model
An alternative version of Equation 2 is

µi = exp(x′iβ) (3)

This implies that one unit increases in an xj are associated with a multiplication
of µj by exp(βj).

Grouped Data and the Offset
Note that the model of Equation 2 refers to individual observations, but

the table gives summary measures. Do we need the individual observations to
proceed? No, because, as Germán Rodŕıguez explains very clearly in his lecture
notes, we can apply the result of Equation 1.

Grouped Data and the Offset
Specifically, define Yijkl to be the number of children borne by the l-th

woman in the (i, j, k)-th group, where i denotes marital duration, j residence
and k education. Let Yijk• =

∑
l Yijkl be the group total shown in the table.

Then if each of the observations in this group is a realization of an independent
Poisson variate with mean µijk, then the group total will be a realization of a
Poisson variate with mean nijkµijk, where nijk is the number of observations in
the (i, j, k)-th cell.
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Grouped Data and the Offset
Suppose now that you postulate a log-linear model for the individual means,

say
log(µijkl) = logE(Yijkl) = xijkβ (4)

Then the log of the expected value of the group total is

log(E(Yijk)) = log(nijkµijk) (5)
= log(nijk) + x′ijkβ (6)

Grouped Data and the Offset
Thus, the group totals follow a log-linear model with exactly the same coef-

ficients β as the individual means, except for the fact that the linear predictor
includes the term log(nijk). This term is referred to as the offset. Often, when
the response is a count of events, the offset represents the log of some measure
of exposure, in this case the number of women.

4 Testing Models of the Fertility Data

Simple One-Variable Models
Let’s consider some models for predicting the fertility data from our potential

predictors. Our first 4 models are:

1. The null model, including only an intercept.

2. A model predicting number of children from Duration (D).

3. A model predicting number of children from Residence (R).

4. A model predicting number of children from Education (E).

To fit the models with Poisson regression, we use the glm package, specifying a
poisson family (the log link is the default).

Simple One-Variable Models
Here we fit simple models that predict number of children from duration,

region of residence, and education. Let’s begin by looking carefully at a model
that predicts number of children solely from the duration of their childbearing
years.]

> ceb.data ← read.table("ceb.dat",header=T)

> fit.D ← glm(y˜dur , family="poisson",

+ of f set = log(n),data=ceb.data)
> fit.E ← glm(y˜educ , family="poisson",

+ of f set = log(n),data=ceb.data)
> fit.R ← glm(y˜res , family="poisson",

+ of f set = log(n),data=ceb.data)
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Note that, in order to fit the model correctly, we had to specify family ="pois-
son" and offset=log(n).

Predicting Children Ever Born from Duration
The dur variable is categorical, so R automatically codes its 6 categories

into 5 variables. Each of these variables takes on a value of 1 for its respective
category. The first category, 00-04, and has no variable representing it. Con-
sequently, it is the “reference category” and has a score of zero. All the other
categories are represented by dummy predictor variables that take on the value
1 if dur has that category—otherwise the dummy variable has a code of zero.

Predicting Children Ever Born from Duration
Let’s look at some output:

> summary(fit.D)

Call:

glm(formula = y ~ dur, family = "poisson", data = ceb.data, offset = log(n))

Deviance Residuals:

Min 1Q Median 3Q Max

-3.5626 -1.4608 -0.5515 0.6060 4.0093

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.10413 0.04416 -2.358 0.0184 *

dur05-09 1.04556 0.05241 19.951 <2e-16 ***

dur10-14 1.44605 0.05025 28.779 <2e-16 ***

dur15-19 1.70719 0.04976 34.310 <2e-16 ***

dur20-24 1.87801 0.04966 37.818 <2e-16 ***

dur25-29 2.07923 0.04752 43.756 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3731.52 on 69 degrees of freedom

Residual deviance: 165.84 on 64 degrees of freedom

AIC: Inf

Number of Fisher Scoring iterations: 4

Predicting Children Ever Born from Duration
Consider a woman whose first marriage was in the last 0–4 years. On average,

such women have exp(−0.1) = 0.9 children.

Consider, on the other hand, a woman whose duration is 20–24 years. Such
women have, on average exp(−0.1 + 1.71) = 4.97 children.
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Predicting Children Ever Born from Education
Next, let’s look at education alone as a predictor.

> summary(fit.E)

Call:

glm(formula = y ~ educ, family = "poisson", data = ceb.data,

offset = log(n))

Deviance Residuals:

Min 1Q Median 3Q Max

-19.2952 -3.0804 0.7426 3.8574 13.1418

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.43567 0.01594 90.090 <2e-16 ***

educnone 0.21154 0.02168 9.759 <2e-16 ***

educsec+ -1.01234 0.05176 -19.557 <2e-16 ***

educupper -0.40473 0.02951 -13.714 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3731.5 on 69 degrees of freedom

Residual deviance: 2661.0 on 66 degrees of freedom

AIC: Inf

Number of Fisher Scoring iterations: 5

Predicting Children Ever Born from Education
With 4 education categories, we need 3 dummy variables. Which category

is the “reference” category in this case?

Consider a woman whose education was “lower” Such women have, on aver-
age, exp(1.44) = 4.2 children.

Consider, on the other hand, a woman whose educational level is postsec-
ondary. Such women have, on average, exp(1.44 +−0.4) = 2.8 children.

Now — You Try It!
Examine the model predicting number of children solely from place of resi-

dence. What is the reference category?

What is the average number of children ever born for women in the reference
category?
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Two-Factor Additive Models
Next we add education as a predictor to duration. The anova function helps

us to see that there is a significant improvement.

> fit.NULL ←glm(y˜1, family="poisson",

+ of f set = log(n),data=ceb.data)
> fit.D.E ← glm(y˜dur+educ , family="poisson",

+ of f set = log(n),data=ceb.data)

> anova(fit.NULL ,fit.D ,fit.D.E)

Analysis of Deviance Table

Model 1: y ~ 1

Model 2: y ~ dur

Model 3: y ~ dur + educ

Resid. Df Resid. Dev Df Deviance

1 69 3731.5

2 64 165.8 5 3565.7

3 61 100.0 3 65.8

Three-Factor Additive Model
Next we add residence to duration and education.

> fit.D.E.R ← glm(y˜dur+educ+res ,
+ family="poisson",of f set = log(n),data=ceb.data)

> anova(fit.NULL ,fit.D ,fit.D.E ,fit.D.E.R)

Analysis of Deviance Table

Model 1: y ~ 1

Model 2: y ~ dur

Model 3: y ~ dur + educ

Model 4: y ~ dur + educ + res

Resid. Df Resid. Dev Df Deviance

1 69 3731.5

2 64 165.8 5 3565.7

3 61 100.0 3 65.8

4 59 70.7 2 29.4

Three-Factor Additive Model

> summary(fit.D.E.R)

Call:

glm(formula = y ~ dur + educ + res, family = "poisson", data = ceb.data,

offset = log(n))
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Deviance Residuals:

Min 1Q Median 3Q Max

-2.29124 -0.66487 0.07588 0.66062 3.67903

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.05695 0.04805 1.185 0.236

dur05-09 0.99765 0.05275 18.912 < 2e-16 ***

dur10-14 1.37053 0.05108 26.833 < 2e-16 ***

dur15-19 1.61423 0.05121 31.524 < 2e-16 ***

dur20-24 1.78549 0.05122 34.856 < 2e-16 ***

dur25-29 1.97679 0.05005 39.500 < 2e-16 ***

educnone -0.02308 0.02266 -1.019 0.308

educsec+ -0.33266 0.05388 -6.174 6.67e-10 ***

educupper -0.12475 0.03000 -4.158 3.21e-05 ***

resSuva -0.15122 0.02833 -5.338 9.37e-08 ***

resurban -0.03896 0.02462 -1.582 0.114

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3731.525 on 69 degrees of freedom

Residual deviance: 70.653 on 59 degrees of freedom

AIC: Inf

Number of Fisher Scoring iterations: 4

Three-Factor Additive Model
What is the predicted average number of children for women married 5–9

years, living in Suva, with post-secondary education?

8


